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    ABSTRACT   

This publication proposes a discussion of the
general problem of validating numerical models for
nonlinear, transient dynamics. The predictive quality of a
numerical model is generally assessed by comparing the
computed response to test data. If the correlation is not
satisfactory, an inverse problem must be formulated and
solved to identify the sources of discrepancy between test
and analysis data. Some of the most recent work
summarized in this publication has focused on
developing test-analysis correlation and inverse problem
solving capabilities for nonlinear vibrations. Among the
difficulties encountered, we cite the necessity to satisfy
continuity of the response when several finite element
optimizations are successively carried out and the need to
propagate variability throughout the optimization of the
model’s parameters. After a brief discussion of the
formulation of inverse problems for nonlinear dynamics,
the general principles which, we believe, should guide
future developments of inverse problem solving are
discussed. In particular, it is proposed to replace the
resolution of an inverse problem with multiple forward,
stochastic problems. The issue of defining an adequate
metrics for test-analysis correlation is also addressed.
Our approach is illustrated using data from a nonlinear
vibration testbed and an impact experiment both
conducted at Los Alamos National Laboratory in support
of the advanced strategic computing initiative and our
code validation and verification program.

   1. INTRODUCTION    

Advances in computational and modeling
capabilities make it possible to simulate a wide range of
difficult problems that would have been off-limits just a
few decades ago. However, developing models and
obtaining numerical solutions do not necessarily imply
that the resulting predictions are correct. Weather
forecast, prediction of acoustic levels and reliability
analysis of mechanical systems are a few examples that
illustrate this difficulty on a daily basis.

This work addresses the general problem of model
validation, that is, how to assess the predictive accuracy
of a numerical simulation and its ability to capture the
dynamics or physics of interest. Model validation
includes classes of problems that have been and continue
to be extensively studied among which we cite health
monitoring, damage detection and finite element model
updating. All these have in common the need to fit a
parametrized model to a reference solution or test data,
therefore, defining an inverse problem. Some of the
general principles which, we believe, should guide the
development of inverse problem solving for the 21st
century, are discussed. These include the development of
general-purpose, nonlinear models; the analysis of
transient, time-domain data; greater imagination in
feature extraction and the definition of test-analysis
metrics; dedicated numerical analysis tools for increasing
the efficiency of inverse problem solving; decentralized
measurement and computational strategies; the
propagation of variability information during the direct
and inverse calculations; and the formulation of
statistical, hypothesis testing to assess the consistency
between test data and multiple numerical simulations.
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Some aspects of this “philosophy” are illustrated
using nonlinear vibration data and an impact experiment
designed for characterizing the behavior of a highly
nonlinear hyperelastic material. Various metrics for test-
analysis correlation are compared, response surfaces are
defined to optimize the design parameters and fast
probability integration is used for assessing the
consistency of various models with respect to test data
in a statistical sense.

   2. MOTIVATION    

The main reason why numerical models have
become so popular is because it is much less expensive
to use computational time than it is to run a
sophisticated experiment. Many practical situations also
occur where the phenomenon of interest can not be
measured directly. For example, this is the case with
large space antennas developed for observation and
communication purposes that do not withstand their
own weight in an environment of 1-g of gravity. So, the
analyst must rely on numerical simulations to establish
the dynamic characteristics of the structure and to
validate control laws.1 Another example is the diagnosis
of cracks or faulty mechanical components in civil
engineering structures or airplanes. In this case, testing
methodologies are simply not yet available due to the
complexity of such systems and engineers must rely on
localized screening or component testing, which turns
out to be time-consuming and very expensive. Modal
testing-based health monitoring appears to be a
promising alternative.2 Hence, the scientific community
has turned to numerical models that can be parametrized
and used to study a wide variety of situations.

This argument has been reinforced in recent years
by the increasing efficiency of processors, the greater
availability of memory, the breakthrough of object-
oriented data structures together with the growing
popularity of parallel processing whether it involves
computers with massively parallel architectures or
networks of single-CPU workstations. Interestingly
enough, the miniaturization of CPU’s and their greater
efficiency have influenced greatly testing procedures,
making it possible to instrument structures with
hundreds of transducers. Powerful data analysis and
friendly computer graphics are also a driving force
behind the development of non-intrusive, optical
measurement systems such as holography and laser
vibrometry. These technological breakthroughs are not
without major consequences on the way engineers are
analyzing structural systems today and on their

conception of test-analysis correlation and inverse
problem solving. In the first case, an illustration is the
rapid development of modeling and computational
procedures for nonlinear dynamics. In the second case,
modal-based updating techniques developed originally to
refine linear structural dynamics models are evolving
into the broader notion of model validation. This work
defines and explores this last concept.

The articulation between testing, modeling and
inverse problem solving is illustrated in Figure 1 where
arrows represent the flow of information. Here, inverse
problem solving is replaced by a methodology where
response surfaces are generated from the resolution of a
large number of forward analyses. This best utilizes our
capabilities for modeling nonlinear systems and our
parallel processing resources. Two other important
contributions to this work are 1) the ability to derive
high accuracy, physics-based material models and 2) fast
probability integration for large-scale structural analysis.
The first one is not discussed in this paper but it is
briefly mentioned because physics-based models of
material behavior are generally obtained from a
microscopic description of the material. As such, they
depend on parameters that can not be measured with
great accuracy and that are best characterized by
probabilistic distributions. This explains why fast
probability integration techniques are critical to our
work and why optimization algorithms are required, not
only to adjust parameters of the models, but also to
assess the quality of models in a probabilistic sense.

Figure 1. Flow chart describing the different steps of
testing, modeling, analysis and validation.
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   3. DESCRIPTION OF LANL TESTBEDS
   FOR MODEL VALIDATION    

To illustrate our views of model validation, two
experiments performed at Los Alamos National
Laboratory (LANL) are briefly described. The first
testbed is a eight-degree of freedom vibrating system that
exhibits significant friction and nonlinear oscillations.
The purpose of the second testbed is to characterize the
behavior of an elastomeric layer of material subjected to
a short-duration impact. Both experiments are designed
to provide test data that can be studied to quantify the
variability of a component-level experiment and to
assess the adequacy of our model validation procedures.

3.1. TESTBED FOR NONLINEAR VIBRATIONS

Our testbed for the validation of nonlinear
vibration modeling is the LANL 8-DOF system (which
stands for Los Alamos National Laboratory eight degrees
of freedom) illustrated in Figure 2. It consists of eight
masses connected by linear springs. The masses are free
to slide along a center rod that provides support for the
whole system. Modal tests are performed on the nominal
system and on a damaged version where the stiffness of
various springs is reduced by 14% or 24%. The exercise
consists in identifying the location and extent of
structural damage by optimizing the spring stiffness of
each spring of the numerical model. This procedure
illustrates the conventional approach to model updating
where test-analysis correlation requires the definition of
modal-based features such as, for example, the difference
between identified and predicted frequencies or the modal
assurance criterion (MAC) formed between test and
analysis mode shapes. Obviously, this approach is
justified for linear models when the dynamics is
dominated by the system’s low frequency modes.

Figure 2. LANL 8-DOF testbed.

Even though the original, linear model is in good
agreement with the measured modal parameters, friction
introduces an unambiguous nonlinearity in the system’s
response as shown in Figures 3 and 4. They represent
the changes in identified modal frequencies (Figure 3)
and damping ratios (Figure 4) as the level of force used
to excite the system is increased.

Figure 3. Evolution of modal frequencies identified
with the 8-DOF testbed as the input level is increased.

Figure 4. Evolution of damping ratios identified with
the 8-DOF testbed as the input level is increased.

Frequencies do not vary significantly because the
distribution of mass and stiffness is unchanged. The
amount of damping in the system, however, is overall
reduced because higher forcing levels tend to reduce the
“stick and slip” phenomenon. As a result, our attempts
to identify the damage based on conventional model
updating techniques fail as long as friction is not
accounted for in the numerical model.3,4 An important
conclusion is that modal parameters, although popular
and widely used in the community of modal analysis,
may not be the best indicators when it comes to
assessing the dynamics of a system.
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A contact mechanism can also added between two
masses to induce a source of contact/impact. It is
pictured in Figure 5. When the system is used in this
nonlinear mode, acceleration data are measured at each
one of the eight masses. Then, features extracted from
the time series can be compared to their numerical
counterparts to assess the predictive quality of a
particular model or family of models. Examples of such
features are, again, the modal parameters identified from
the measurements. They can also be defined using the
difference of time series, polynomial fits, principal
component decomposition, etc.

Figure 5. Contact mechanism of the LANL
8-DOF testbed for nonlinear vibrations.

Figure 6. Accelerations measured at sensor 1 (top)
and sensor 5 (bottom) for the LANL 8-DOF testbed.

Figure 6 illustrates the raw test data. Accelerations
measured at locations 1 and 5 are shown when the
system is configured with the impact mechanism and
excited by a random signal at location 1. Several
examples of features such as those mentioned previously
are given and their ability to discriminate “good” models

from “poor” models is illustrated in Section 5.3. This
issue is critical because the transient oscillations featured
by these data make it difficult to establish a comparison
based, for example, on the root mean square (RMS) error
between measured and predicted time series.

With the nonlinear configuration, the test we are
interested in is two-fold. First, the best possible friction
model must be obtained. Then, the ability of inverse
problem solving to identify a damaged spring and to
discriminate between structural damage and impact
nonlinearity is investigated. This is achieved by building
a parametric, explicit finite element model of the
system; generating the time-domain responses; and
minimizing the “distance” between test data and
predictions, whether the distance is evaluated in the time
or frequency domain. This optimization problem can be
formulated as the minimization of the cost function
shown in equation (1) where the first contribution
represents the metric used for test-analysis correlation
and the second contribution serves the purpose of
regularization and promotes minimum-change solutions
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Constraints such as p (p p ) pmin e e max≤ + ≤δ  are added

to the formulation to eliminate any local minimum that
would not be acceptable from a physical standpoint. The
weighting matrices in equation (1) are generally kept
constant and diagonal for computational efficiency. They
can also be defined as general covariance matrices which
then formulates a Bayesian correction procedure.5

3.2. TESTBED FOR TRANSIENT IMPACT

The purpose of this experiment is to provide us
with test data that can be used for validating the
predictive quality of a numerical model based on explicit
finite element (FE) simulations. The application targeted
is a high-frequency shock test that features a component
characterized by a nonlinear, viscoelastic material. Major
differences compared to the previous 8-DOF system are
the dynamics observed (transient as opposed to nonlinear
vibrations); the larger computational effort required to
simulate the response (the numerical model consists of
several thousand degrees of freedom and Lagrange
multipliers); and the need to develop stochastic models
that account for sources of variability and uncertainty.
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3.2.1. Numerical Modeling

The setup is illustrated in Figure 7. It can be
observed that the main two components (steel impactor
and foam layer) are assembled on a mounting plate that
is attached to the carriage. The center of the steel
cylinder is hollow and it is fixed with a rigid collar to
restrict the motion of the impactor to the vertical
direction. This assures perfectly bilinear contact between
the steel and foam components, allowing the structure to
be modeled axi-symmetrically. In spite of this, a full
three-dimensional model is also developed to verify this
assumption’s validity.

Figure 7. Description of the assembly
of the cylindrical impactor and carriage.

Figure 8. 3D model of the impact testbed.

Figure 8 illustrates one of the discretized models
developed for numerical simulation. The analysis
program used for these calculations is HKS/Abaqus-
Explicit, a general-purpose package for finite element
modeling of nonlinear structural dynamics.6 It features
an explicit time integration algorithm, which is
convenient when dealing with nonlinear materials,
impact or contact, and high frequency excitations.

In an effort to match the test data, several FE
models are developed by varying, among other things,
the constitutive law and the type of modeling. Therefore,
optimization variables consist of the usual design
variables augmented with structural form parameters
such as kinematic assumptions, geometry description
(2D or 3D), contact modeling and numerical viscosity.
Another important parameter is the amount of preload
applied by the bolt used to hold this assembly together.
The torque applied was not measured during testing and
it may have varied from test to test. The resulting
difficulty is that the amount of preload applied must be
considered a random variable because it is believed to
have contributed to the variability of the experiment. By
opposition, variables describing the material are
unknown but deterministic because they do not vary as
long as the same sample of material is tested. This
implies that the analysis tools must be able to handle
random variables and test-analysis correlation must be
recast into a more general stochastic framework.

3.2.2. Experiment Setup

During the actual test, the carriage that weights
955 lbm (433 kg) is dropped from various heights and
impacts a rigid floor.7 The input acceleration is measured
on the top surface of the carriage and three output
accelerations are measured on top of the steel impactor
that weights 24 lbm (11 kg). Figure 9 provides an
illustration of the test setup and instrumentation. This
impact test is repeated several times to collect multiple
data sets from which the experiment’s repeatability can
be assessed. At impact, the steel cylinder compresses the
foam to cause elastic and plastic strains during a few
micro-seconds as shown in Figures 10 and 11.

Figure 9. LANL impact test setup.
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Typical accelerations measured during the impact
tests are depicted in Figures 10 and 11. Both data sets are
generated by dropping the carriage from an initial height
of 13 inches (0.33 meters). The response of a 1/4 inch-
thick (6.3 mm) layer of foam is shown in Figure 10 and
the response of a 1/2 inch-thick (12.6 mm) layer is
shown on Figure 11. It can be observed that over a
thousand g’s are measured on top of the impact cylinder
which yields large deformations in the foam layer. The
time scale also indicates that the associated strain rates
are important. Lastly, the variation of peak acceleration
observed in Figure 10 suggests that a non-zero angle of
impact is involved, making it necessary to model this
system with a 3D discretization. Clearly, modal
superposition techniques would fail modeling this
system because 1) contact can not be represented
efficiently with mode shapes; 2) nonlinear hyperfoam
models are needed to represent the foam’s hardening
behavior; and 3) very refined meshes would be required
to capture the frequency content well over 10,000 Hertz.

Figure 10. Accelerations measured during a
low-velocity impact on a thin foam layer.

Figure 11. Accelerations measured during a
low-velocity impact on a thick foam layer.

3.2.3. Variability of the Experiment

Table 1 gives the number of data sets collected for
each configuration tested. The reason why less data sets
are available at high impact velocity is because these
tests proved to be destructive to the elastomeric material
and could not be repeated. Figure 12 shows the
variability observed during the impacts when the same
configuration of the system (same sample of elastomeric
material and impact velocity) is tested ten times.

Table 1. Data collected with the impact testbed.

Number of
Data Sets
Collected

Low Velocity
Impact

(13 in. Drop)

High Velocity
Impact

(155 in. Drop)

Thin Layer
(0.25 in.) 10 Tests 5 Tests

Thick Layer
(0.50 in.) 10 Tests 5 Tests

Figure 12. Accelerations measured during 10
“similar” impact tests (top: input; bottom: output 1).

Although the environment of this experiment was
very well controlled, a small spread in both input and
output signals is obtained. This justifies our point that
model correlation and model validation must be
formulated as statistical pattern recognition problems.
From Figure 12, the variability of the test data can be
assessed and represented in a number of ways, an
illustration of which is provided in Figure 13. It shows
the peak acceleration probability density functions
(PDF) for each measurement. Such representation tells
us, for example, that 17% of the values measured at
output sensor 1 are equal to 1,520 g’s when similar
experiments are repeated. According to Figure 13, this
value is the most probable peak acceleration. What is
therefore important is that the correlated models predict
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the acceleration levels with the same probability of
occurrence as the one inferred from test data.

Figure 13. Probability density functions of the peak
acceleration measured during 10 impact tests.

   4. DIRECT CORRELATION
    OF TIME SERIES   

One major difficulty of time-domain model
validation is the reconstruction of continuous solution
fields during the optimization. This issue is fundamental
because, if the inverse problem is not formulated
correctly, the optimized, numerical model yields
discontinuous acceleration, velocity and displacement
fields which contradicts the laws of mechanics for the
class of problems investigated here.

With the conventional approach for solving inverse
problems, parametric optimization is formulated by
selecting a test-analysis correlation metric denoted by the
vector {R} in equation (1). Implementing successive
optimizations produces several optimized models, one
for each time window considered. This is necessary not
only for computational purposes but also because some
of the parameters being optimized may vary in time and
following such evolution as it is occurring may be
critical to model validation. However, nothing in the
formulation of the inverse problem enforces continuity
between the solution fields obtained from models
optimized within the i-th and (i+1)-th time windows.
Since the design variables can converge to different
solutions in successive time windows, the discontinuity
of the solution can be written, for example, in terms of
the displacement field as

lim x(p , t) lim x(p , t)
t t
t t

(i)

t t
t t

(i 1)

i

i

i

i

→
≤

→
≥

+≠                 (2)

The only solution currently available is to re-
formulate the inverse problem as a constrained
optimization where the continuity of the solution field
is enforced explicitly. This strategy is based on the
theory of optimal control and it relies on the resolution
of multiple two-point boundary value problems
(BVP).8,9 When satisfactory solutions of the two-point
BVP’s are obtained, the numerical model is guaranteed
to match the measured data at the beginning and at end
of the time window considered. In addition, a parametric
adjustment can be brought to the model to improve the
correlation with test data and a non-parametric residue is
best-fitted that can be used for identifying any
nonlinearity, source of variability or modeling error not
accounted for by the model. We emphasize that the idea
of optimal error control is not original. Full credit must
be given to the authors of References 8 and 9 although
their original motivation was somewhat different.

Our application of this technique to a single degree
of freedom system and a four-degree of freedom system
shows that the optimal control approach does indeed
resolve the discontinuity. This improvement comes with
the additional cost of formulating a two-point BVP to
guaranty continuity of the solution. Since the procedure
is embedded within an optimization solver, multiple
two-point BVP’s must be solved for. Unfortunately, the
impact on the computational requirement is enormous
and practical applications currently remain out-of-reach.
(Typically, identifying an unknown nonlinear force with
a single degree of freedom, Duffing oscillator may
require up to 20 hours of CPU time on a workstation.)
For this reason, we adopt the approach of replacing the
resolution of inverse problems with multiple forward,
stochastic calculations.

   5. VALIDATION OF NUMERICAL MODELS   

Even though model updating and health
monitoring have been prolific fields of research for many
years, their applications have mostly been restricted to
linear systems that can be accurately described by a
subset of low-frequency modes. Modal-based techniques
become rapidly obsolete when systems are subjected to
high-frequency excitation, when variability is an issue of
concern or when the dynamics of interest is strongly
nonlinear. In the remainder, several issues are discussed
that, we believe, are critical to the success of model
validation. They are the following ones:

• Extracting features from the data;
• Developing fast probability integration tools;
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• Solving stochastic optimization problems;
• Assessing the statistical consistency of data sets.

After a short discussion of the basic concepts of
model validation (Section 5.1) and a description of the
overall computational procedure (Section 5.2), these four
issues are addressed in Sections 5.3 to 5.6.

5.1. BASIC CONCEPTS

The “philosophy” presented here is to replace the
formulation of inverse problems by a methodology
where error surfaces are generated from the resolution of
a large number of forward, stochastic analyses, then,
optimized to identify the source of modeling error. This
is the only alternative to the correct yet computationally
impractical formulation discussed briefly in Section 4.
Besides having to account for uncertain inputs, imperfect
material characterization and modeling errors during a
design cycle, the other reason for this approach is to
recast model updating as a problem of hypothesis
testing. When the predictive quality of a model is
assessed, we believe that three fundamental questions
must be answered:

• Are results from the experiment(s) and simulation(s)
consistent statistically?

• What is the degree of confidence associated with the
first answer?

• If additional data sets are available, by how much
does the confidence increase?

Hypothesis testing permits to answer these
questions. The difficulty however is to assess the
minimum amount of data necessary to formulate a
meaningful test and to implement such a test for large-
scale, numerical simulations. Although hypothesis
testing is well-known, very little literature is available
on the subject of “population versus population”
testing. Moreover, applying conventional tools to the
multivariate case is not immediate.

5.2. OVERVIEW OF THE PROCEDURE

According to the procedure illustrated in Figure 14,
optimization parameters and random variables are first
defined. Multiple FE solutions and multi-dimensional
error surfaces are generated from statistical sampling.
Error surfaces provide a metric for test-analysis
correlation and model updating. The first useful tool is
sensitivity analysis employed to reduce the subset of
potential optimization variables down to the most

sensitive ones. Then, the best possible model is sought
after through the optimization of its design parameters.
When these consist of random variables, the procedure
must either search for the most likely values (case where
distributions are known) or optimize the statistics (case
where distributions are somewhat unknown). Finally,
Figure 14 shows that, rather than comparing response
levels, the ability of a probabilistic model to reproduce
test data must be assessed using the response’s statistics.

Figure 14. Flow chart showing the successive
steps of model validation.

Software integration is an important part of the
procedure described previously. Three software packages
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involving four different programming languages are
interfaced. The test-analysis correlation procedure is
controlled by a library of Matlab functions.10 The reason
for this choice is flexibility and the possibility to
develop a user graphical interface easily. Depending on
the type of analysis requested by the user, the Matlab-
based software writes and compiles Fortran77 routines
that are used for generating the Abaqus input deck.
Drivers written in the script language Python are also
generated and used for piloting the FE analyses.11

Finally, results are uploaded back into Matlab for test-
analysis correlation and parametric optimization. This
architecture should enable the interfacing in the near
future of a variety of engineering analysis software,
including parallel FE processing packages for running
large-dimensional, nonlinear engineering simulations on
high-performance computing platforms.

5.3. DATA CORRELATION METRICS

Large computer simulations tend to generate
enormous amounts of output that must be synthesized
into a small number of indicators for the analysis. This
step is referred to as data reduction or feature extraction
in the literature. These features are typically used to
define the test-analysis correlation metrics that may be
optimized depending on the predictive quality of the
model. The main issue in feature extraction is to define
indicators that provide meaningful insight regarding the
ability of the model to capture the dynamics of the
system investigated. Some of the features defined for
nonlinear structural dynamics are reviewed.

• RMS error of time series:

The simplest of test-analysis correlation metrics is
the difference between measured and predicted time
series. Equation (3) shows the RMS error between peak
acceleration responses cumulated over several sensors.
The total simulation error is defined in equation (4).

J p x x pmeasured s
peak

s
peak

s sensor

( ) ),= −( )∑ ˙̇ ˙̇ (
,

2
           (3)

J p p( ) x (t) x ( t)measured,s s
t,times,sensor

2
= −( )∑∑ ˙̇ ˙̇ ;        (4)

• Principal component decomposition:

The principal component decomposition (PCD) is
a comparison of manifolds.12 Instead of comparing the
signals directly, the angles between the “nonlinear
subspaces” spanned by the responses are estimated. To

do so, time responses are collected into data matrices
whose singular value decomposition efficiently
compares multi-dimensional data sets with automatic
normalization. The PCD metric may be defined as
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In equation (5), ∆U[ ] , ∆σ{ }  and ∆V[ ]  represent

normalized differences between the singular values and
vectors of the analysis and test data matrices defined as
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Although more computationally intensive, this
feature provides an elegant framework for interpreting
the data by generalizing the notion of mode shapes and
modal contributions to nonlinear systems. It may also
filter out measurement noise that is typically associated
with small singular values.

• Shock response spectrum:

The shock response spectrum (SRS) is obtained by
calculating the response of a single degree of freedom
system to a known input such as, for example, the
acceleration signal denoted by I(t) below. The response
is then characterized by a given criterion. For example,
an acceleration spectrum is defined by plotting

SRS xs s
peak( ) ˙̇ ( )ω ω=                  (10)

versus ω, the system’s frequency after the acceleration
response has been obtained by integrating the equation

˙̇ ( ) ˙( ) ( ) ( )x t x t x t I t+ + =2 2ζω ω           (11)

The purpose of SRS analysis is to avoid selecting
modal characteristics that may result into significant
response levels when designing a sub-component. A
correlation metric based on SRS data is defined as

J p SRS SRS ptest s i s i
i designs sensor

( ) )= −( )∑∑ ,
,,

( ) ( ;ω ω
2

  (12)
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The advantage of the previous three features (RMS
error, PCD and SRS) is that no assumption is made
regarding the dynamics encountered. They apply to linear
and nonlinear systems alike. The remaining features
presented below assume specific model forms, from
first-order to second-order representations. Thus, they are
relevant to the analysis of linear systems only.

• ARMA-based features:

An auto-regressive, moving average (ARMA)
model can always be best-fitted to the data, whether the
system is linear or not. To do so, coefficients of the
following linear combination are calculated

  

˙̇ ( ) ˙̇ ( ) ( )x t x t i t F t j ts si s
i N

sj s
j NAR MA

= − + −
= =
∑ ∑α β∆ ∆

1 1L L

  (13)

Coefficients of the models obtained from test and
analysis data can be compared to define the correlation
metric. Another possibility is to employ the coefficients
obtained by fitting the test data to predict the simulation
response and to estimate the error between the predicted
and actual simulation responses. These alternatives are
illustrated in equations (14) and (15), respectively

J p ptest si i
i order

( ) ( )s
s,sensor

= −( )∑∑ α α,
,

2
         (14)

J p p( ) x ( t) x (t)s s
t,times,sensor

2
= −( )∑∑ ˙̇ ; ˙̇̂           (15)

• Frequency response functions:

The frequency response function (FRF) of a linear
system is defined as the inverse of the dynamic stiffness
matrix at a given forcing frequency Ω

H K j D M( )Ω Ω Ω[ ] = [ ] + [ ] − [ ]( )−2 1        (16)

Equation (16) constitutes the basic tool for
calculating a model’s FRF data between specified input
and output locations. Similarly, a system’s FRF can be
identified from measurements by dividing the cross-
correlation function of a given input-output pair by the
input’s auto-correlation function. The RMS error
between the two sets of FRF curves can be formed as
another metric for test analysis correlation

J p H H pij k ij k
k frequencyij

( ) ( ) ( )measured,
,,sensor

2
= −( )∑∑ Ω Ω;

(17)

• ERA-based features:

Finally, a second-order, linear model can be
formulated by representing the input-output, FRF data
as a superposition of modal contributions

H ij

ik jk

k k kk

( )
,

Ω
Φ Φ

Ω Ω
=

+ −∑ ω ζ ω2 22 jmode

       (18)

Numerous algorithms are available for time-
domain or frequency-domain system identification
among which we cite the Eigensystem Realization
Algorithm (ERA).13 Its advantage is that it can be
automated to a large amount to extract the resonant
frequencies ωk, modal damping ratios ζk and mode
shapes {Φk} directly from the measured or predicted time
signals. Then, various metrics can be defined as

J p
ptest k k

test kk

( ) =
−





∑

ω ω
ω
,

,,

( )2 2

2

2

mode

            (19)

J p
ptest k k

test kk

( ) =
−





∑

ζ ζ
ζ

,

,,

( )

mode

2

             (20)

J p ptest sk sk
ks sensor

( )
2

= −( )∑∑ Φ Φ,
,,

( )
mode

         (21)

Figure 15 compares the six metrics defined by
equations (4), (5), (12), (15), (17) and (19) for test-
analysis correlation based on RMS error, PCD, SRS,
ARMA, FRF and ERA features, respectively. This
illustration is provided with the 8-DOF testbed because
its measured responses are difficult to characterize (see
Figure 6 where responses look like random, zero-mean
signals). Assessing the predictive quality of a numerical
simulation is therefore a difficult task.

Figure 15. Comparison of various features used to
refine the explicit FE model of the 8-DOF system.
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In Figure 15, the horizontal axis represents 175
designs evaluated and compared to the test data during a
parametric optimization procedure. The objective is to
identify the best possible friction model. Here, “best
model” refers to a design that minimizes a particular
test-analysis correlation metric. It can be observed that
only the SRS-based metric (12) segregates “good” from
“poor” designs. This illustrates the importance of feature
selection for test-analysis correlation and optimization.

5.4. FAST PROBABILITY INTEGRATION

Fast probability integration (FPI) is used to
propagate efficiently variability information during
structural analysis. Our FPI capability relies on
NESSUS (which stands for Numerical Evaluation of
Stochastic Structures Under Stress), a software for
analyzing the reliability of mechanical systems that
provides a practical way of propagating uncertainty
throughout the calculations.14 Using a software package
for reliability analysis to address test-analysis correlation
is achieved by following the steps detailed below.

First, it is assumed that the model’s random
variables collected in a vector {Χ} are defined. These
may include uncertain input forces, random parameters
for material modeling, manufacturing tolerances, etc. We
also define a response function Ζ and the objective of the
FE calculation is to estimate the value of Ζ for a given
sample {Χ} of our random variables. Finally, a limit
state function g(Χ) is defined that describes the
correlation with test data. “Success” is defined if g(Χ)=0,
that is, if the response measured during the test is
matched by the model in a probabilistic sense. It means
that the problem of model validation consists of
calculating the PDF or the cumulative density function
(CDF) of the Ζ-response, respectively defined as

p ( ) Prob ZZ α α= =[ ]
F ( ) Prob Z p z dzZ zα α

α
= ≤[ ] = ( )

−∞∫         (22)

The central aspect of FPI is the search for the most
probable prediction (MPP) of the model in the presence
of uncertainty. To obtain the MPP, the Ζ-response’s
joint PDF is maximized under the constraint g(Χ)=0.
This optimization is solved by converting the original
variables {Χ} into standardized normal variables {u},
that is, variables described by the unit normal CDF

Φ(u)
1

2
e ds

s

2
u

2

=
−

−∞∫ π
               (23)

Once the MPP has been determined, the response
surface can be explored to reconstruct the entire PDF or
CDF. The transformation from {Χ} to {u} and its
inverse are achieved using the Rosenblatt transform15

u (F (X)),1
Z= −Φ    X F ( (u))Z

1= − Φ         (24)

An illustration is presented with the impact testbed
discussed in Section 3.2. For this application, several
2D and 3D models are developed. Among the parameters
varied are the type of elements used in the discretization;
the size of the mesh; the type of contact conditions
implemented; the material modeling; the preload applied
when the center bolt is tightened; the angles of the steel
impactor at impact; and the input acceleration. The two
types of information obtained by FPI are illustrated in
Figures 16 and 17. Here, we are interested in predicting
the probability distribution of the peak acceleration at
output sensor 1 at the time of impact. From Figure 16,
it can be seen, for example, that the probability that the
peak acceleration be less than 1,520 g’s is equal to 90%.

Figure 16. CDF of the peak acceleration predicted by
numerical simulation of the impact test.

Figure 17. Sensitivity of the CDF with respect to
various random, design parameters.
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The second type of information obtained from FPI
is sensitivity data for comparing the influence of each
random variable. Figure 17 summarizes a study where
the influence of five variables (impact velocity, foam
thickness, foam density and parameters of the stress-
strain, hyperfoam model) is investigated.

5.5. OPTIMIZING STOCHASTIC MODELS

In this Section, we discuss results obtained when
the explicit, nonlinear FE simulations are optimized to
match test data. The illustration provided in the
remainder involves the impact testbed. When correlation
with test data is not satisfactory, Ζ-response surfaces are
used to generate fast-running models. These, in turn,
provide the core of the parametric optimization
algorithm that fine-tunes a subset of the model’s design
variables to improve the correlation with test data.

Figure 18 pictures a typical Ζ-response surface
obtained with the 3D model: the two horizontal axes
represent the values spanned by two parameters and the
vertical axis represents the PCD cost function (5) on a
log scale. For clarity, the surface is shown as only two
of the seven optimization variables are varied. The
complete set includes two coefficients of the hyperfoam
material model; two angles of impact that simulate a
small free-play in the alignment of the carriage and steel
impactor; the bolt preload; the input acceleration scaling
factor; and a numerical bulk viscosity parameter. A total
of 1,845 FE models are analyzed to generate a fast-
running model after having determined the approximate
location of the MPP from probabilistic analysis.

Figure 18. Ζ-response surface. (The metric defined is
the PCD cost (5) based on three accelerations.)

Figure 19 depicts the correlation before and after
parametric optimization. A clear improvement of the

model’s predictive quality is witnessed which, in turn,
leads to a more accurate representation of the viscoelastic
material. Note that the metric employed for optimizing
the parameters (PCD, shown in Figure 18) is different
from the correlation metric that consists in comparing
the time-domain, acceleration signals. One difficulty is
that of determining the optimal distribution of an input,
random variable. An analyst may be faced with this
problem when no a priori information is available
regarding the definition of a variable. The optimization
of unknown distributions is still, to the best of our
knowledge, an area of open research. Subjective
probability and Bayesian belief network may resolve this
difficulty.16 They define an attractive framework for
assessing the influence of prior distributions on
posterior, test-analysis correlation indicators.

Figure 19. Correlation of the 3D model.

The last aspect of model validation addressed in
this Section consists of verifying that the optimized
model is indeed correct. This is achieved by comparing
predictions of various models to measured data sets for
configurations different from the one used during FPI
and optimization. For example, the 3D models are
optimized using the thin pad/low impact velocity setup.
Then, the 2D, axi-symmetric models are verified with
the thick pad/low impact velocity setup.

On Figure 20, predictions of the original and final
2D models are compared to test data measured during a
low-velocity impact using the 0.25 in. (6.3 mm) thick
foam pad. On Figure 21, the response of a 0.50 in.
(12.6 mm) thick foam pad is shown. Despite small
oscillations attributed to numerical noise generated by
the contact algorithm, the models predict the acceleration
levels measured during the test. We believe that these
independent checks constitute the only valid indication
that the modeling is correct.
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Figure 20. Verification of the predictions:
Response of a thin pad (1/4 in., 6.3 mm).

Figure 21. Verification of the predictions:
Response of a thick pad (1/2 in., 12.6 mm).

5.6. STATISTICAL HYPOTHESIS TESTING

One of the open research issues that this work has
identified is the problem of establishing a correlation
between multiple data sets. By this we mean “assessing
the degree to which two populations are consistent with
each other.” Our literature review seems to indicate that
tools for assessing the distance between multiple data
sets are not readily available in the context of statistical
correlation and multivariate analysis.

This difficulty is illustrated in Figure 22. It shows
the peak acceleration values for channels 1 and 2 of the
impact testbed plotted against each other. The data of ten
independent, “identical” tests are shown together with
simulation results from two different models. For each
one of the two models, a particular design is generated
by varying the angles of impact and the bolt preload.
Then, each design is analyzed using the ten different

input acceleration signals measured. The three ellipsoids
shown in Figure 22 illustrate the 95% confidence
intervals for the test data and two models. The predictive
quality of one of the models is better because most of its
data points (68 of 100) fall within the 95% confidence
interval of the test data. The other model predicts 34 of
100 points within the test’s 95% confidence interval.

Figure 22. Comparison of test and analysis data in a
two-feature space. (The 2D space represents the peak

accelerations measured or predicted at sensors 1 and 2.)

By inspection of Figure 22, it is apparent that the
peak magnitudes of measured accelerations 1 and 2 are
uncorrelated because the 95% confidence interval is
nearly circular. Thus, we suspect that one of the greater
sources of variability is the source that affects the
channels differently. This conclusion, however, is not
confirmed by data generated from the two models. A
better illustration is provided in Figure 23 where the
joint CDF interpolated from test data is compared to
CDF’s of the two models. It illustrates the disagreement
between test data and simulations.

Figure 23. Comparison of cumulative density
functions for the test data and two simulations.
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This example illustrates that plotting several
features against each other defines a powerful analysis
tool. Unfortunately, higher-order graphics are difficult to
represent, therefore, requiring quantitative indicators of
the model's fit to test data. Such statistical consistency
can be assessed using a standard, multivariate
Hotelling’s T2 test. First, statistics are calculated from
the distributions of features. In the following, the
vectors of mean values are denoted by {µ} and covariance
matrices are denoted by [Σ]. Hotelling’s T2 test states
that the mean vector of the model features is an estimate
of the mean vector of test features to the (100-α)%
confidence level if

µ µ µ µ

α

(p) (p)

N N 1

N N 1
( )

test

T

test

1

test

p s

s p

N , N Np s p

{ } − { }( ) [ ] { } − { }( )

≤
−( )
−( )

−

−

Σ

F

       (25)

Applied to the data shown in Figures 22-23 and
characterized by Np = 2 features and Ns = 100 samples,
the statistics (25) sets the acceptance ratio to 1.0035 at
the 95% confidence level. The Mahalanobis distance in
the left-hand side of equation (25) is equal to 4.0 for the
first model which clearly indicates that it fails the test.
The Mahalanobis distance of the second model is equal
to 0.2. This establishes that the mean response predicted
by our second model has converged. It can alternatively
be stated that we are 95% certain that the average peak
accelerations predicted by this model are consistent with
test data given the sources of variability of the
experiment and given the sources of uncertainty of the
model. However, this conclusion remains of limited
practical use for model validation as long as the variance
of the population has not converged as well.

One of the only possibility available for testing
both mean and variance is to calculate Kullback-
Leibler’s relative entropy defined as the expected value of
the ratio between the PDF’s of the two populations

I(Model || Test) E
p ( )

p ( )
Z
model

Z
test

=










α
α

              (26)

If the features used {Z} are normally distributed or
if enough data points are available to justify the
application of the central limit Theorem, the relative
entropy can be approximated using Gaussian PDF’s to
represent the test and analysis distributions. Then, this
entropy may be used for assessing the consistency
between two populations of features and for optimizing
parameters of a statistical model. We emphasize that the

computational requirement associated to this procedure
may become important since the probability distribution
of each feature considered for test-analysis correlation
must be assessed for each candidate design evaluated
during the optimization. This, however, is the only
possibility to guaranty at a given confidence level that
the numerical simulation is validated in the context of
uncertainty propagation. For all practical purposes, the
normal approximation to definition (26) is stated as

I(Model || Test)
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2
Trace (p)

N log
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  (27)

An illustration is provided in Figure 24 where the
value of the Kullback-Leibler entropy is represented with
four different models (the original material model of the
impact testbed and three others obtained after successive
optimization steps). Almost two orders of magnitude are
obtained between the entropy of the original and final
models. It demonstrates the efficiency of this statistical
indicator for characterizing the predictive quality of a
model based on multivariate data features.

Figure 24. Evolution of the Kullback-Leibler entropy
when optimizing the hyperfoam material.

Unfortunately, statistical tests for verifying a
pass/fail hypothesis based on the relative entropy (27)
are not available in the general case. This limitation is
currently being addressed by investigating the efficiency
of conventional hypothesis testing.
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    CONCLUSION    

In this publication, a general framework is
proposed for validating numerical models for nonlinear,
transient dynamics. To bypass difficulties identified
when applying test-analysis correlation methods to
nonlinear vibration data, inverse problems are replaced
with multiple forward, stochastic problems. After a
metric has been defined for comparing test and analysis
data, response surfaces are generated that can be used for
assessing in a probabilistic sense the quality of a
particular simulation with respect to “reference” or test
data and for optimizing the model’s design parameters to
improve its predictive quality. Data sets from several
experiments conducted at Los Alamos National
Laboratory in support of our code validation and
verification program are used to illustrate the advantages
and drawbacks of this approach. Several directions of
research are stated throughout this work. One of them is
to implement methods of statistical, hypothesis testing
to assess the consistency between test data and numerical
simulations using multivariate test-analysis correlation.
Combining the parametrized uncertainty approach with
the estimation of the experiment’s total uncertainty is
also a direction that may be pursued in the future.
Finally, we mention the demonstration of the entire
procedure with a complex experiment during which
nonlinear, structural systems are subjected to transient,
explosive loading.
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